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ABSTRACT 

Keystroke analysis has been an accepted method for user identification and 

authentication since the early 1980s. Most of the research in this field of biometrics has 

focused on traditional computer keyboards, with very few experiments performed on 

touchscreen keyboards found on modern smartphones. This study focused on identifying 

a smartphone user based on typing samples input by copying fixed text, as well as 

spontaneously-authored free text. Features used for identification were duration of key 

press, as well as bigram and trigram transitions. User classification based on duration 

features proved to be successful in 70 percent of inputs to our k-nearest neighbors 

classifier. 
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I. INTRODUCTION 

Passive authentication of mobile devices using biometric signals has been 

proposed as a more secure and more convenient solution to the problem of end-user 

authentication. Proposed methods include gait analysis [1] and geolocation via RSSI 

signals [2]. We investigate the use of keystroke timing dynamics, a biometric signal 

previously studied for user authentication in the context of desktop clients [3] [4]. We 

extend this work, investigating if those results extend to the domain of software-based 

keyboards on mobile devices. We re-investigate the results of Tappert et al. [5] [6] [7] on 

keyboard authentication using pre-selected and free text samples for hardware keyboards 

with desktop devices in the new domain of software keyboards on mobile devices.  

Analysis of keystroke dynamics for the purpose of identifying someone falls into 

a category of biometrics known as behavioral biometrics. Where physical biometrics are 

concerned with features of the human body that cannot be easily changed, such as 

fingerprints or retinal blood vessel patterns, behavioral biometrics encompass human 

traits that require motor skills, such as typing or walking. Yampolskiy and Govindaraju 

[8] observed that behavioral biometrics differ from physical biometrics in that they often 

incorporate a time measurement, such as how long it takes a person to transition from a 

press of a particular key to a press of another key. 

The rapid adoption of touchscreen mobile phones has opened up a new 

opportunity for study in keystroke dynamics and, to date, there are very few experiments 

in using keystrokes entered on a virtual keyboard via a touchscreen to identify and 

authenticate a user. A touchscreen or soft keyboard on a smartphone offers significantly 

more challenges for keystroke analysis than a hardware keyboard. Since hardware 

keyboards have a more-or-less established shape and layout and have been used by 

people for most of their lives, most people are much more familiar and skilled with them 

than with touchscreen keyboards. Soft keyboards have only recently become more widely 

used as iOS and Android based phones have driven wide-spread smartphone adoption. 

The small form factor of a smartphone, the dramatic variation in keyboard size and 

layout, and some peoples’ discomfort with soft keyboards due to the lack of physical 
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feedback they would receive from a hardware keyboard all combine to make text input on 

a soft keyboard a much different experience that may lead to dramatic differences from 

how they would type on a hardware keyboard or differences in typing style among 

different users. 

A. RESEARCH QUESTION 

Given an observation of a user’s typing behavior on a smartphone with a 

touchscreen keyboard, can we identify the user based solely on the timing patterns 

associated with the previous observations? 

The goal for the authentication is to answer the yes or no question: “Given a set of 

prior observations from X and an observation from a user, can we decide that the user is 

X?” Toward this goal, our research investigates a slightly different question: “Given a set 

of observations from a population and an observation from a user in that population, can 

we decide the identity of the user?” These two questions are different and require 

different approaches with regard to how we model the data presented to the classification 

algorithm. Commonly the former requires, for each user, a model of each user’s timing 

and a “model-of-everyone-else” The “model-of-everyone-else” is commonly 

implemented by analyzing all of the other users’ timing data in aggregate [5]. In 

comparison, the latter only requires a model of each user’s keystroke timing. These 

models are then compared to the sample from the unknown user and the username of the 

model that looks the most like the sample is chosen to label the unknown user. We are 

investigating the latter in this study as a first step toward determining the feasibility of 

using keystroke timing data from touchscreen keyboards as an identifying feature in the 

authentication process. 

B. RESULTS 

When splitting the typing samples into 80 percent training and 20 percent testing 

sections, we were able to successfully identify the author of a given sample of typing 70 

percent of the time using a k-nearest neighbors classifier. This fell to 40 percent when 

attempting to classify the user when based on the fourth sample, a free-text sample typed 

with the phone held in landscape orientation. 
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When splitting fixed-text typed with the phone in portrait orientation into four 

training and test sets by paragraph, we successfully identified the user 80 percent of the 

time using a k-nearest neighbors classifier. 

C. ORGANIZATION OF THESIS 

Chapter I introduces the research question, motivation for our study, and gives a 

summary of results. Chapter II discusses prior and related work and gives background on 

the algorithms and features used in this study. Chapter III discusses the structure and 

methodology used in this study. Chapter IV describes our data analysis procedures. 

Chapter V presents a discussion of our results. Chapter VI briefly summarizes our work 

and contains suggestions for future work. 
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II. BACKGROUND 

In this chapter, we explore common features used in keystroke analysis, as well as 

prior and related work. 

A. FEATURES 

There are two primary categories of features explored in authentication studies 

based on keystroke dynamics: single character duration and n-gram timing data. Single 

character duration is measured for each key pressed and is the time from the press of the 

key to the release of the key. N-gram timing data consists of the timing between 

transitions between characters, with timings among bi-grams and tri-grams being most 

common. Following the naming convention of Tappert [5], there are two categories of 

transition timing one may measure: type-1 and type-2 (see Figure 3). A type-1 transition 

(or type-1 timing data) is the time elapsed from the release of a key to the press of the 

next key and can be negative. A type-2 transition (or type-2 timing data) is the time 

elapsed from the press of a key to the press of the next key and is always positive. 

 

Figure 1.  Type-1 (t1) and type-2 (t2) timing data and duration (from [5]). 

B. PRIOR WORK 

One of the first studies into keystroke dynamics as a method of user identification 

was done by Gaines et al. [9] in 1980. They asked six experienced secretaries at The 
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Rand Corporation to type three pre-prepared samples into a computer that measured the 

time it took them to transition between each successive pair of letters, also known as 

digraphs. They note that even before performing formal statistical analysis on the 

samples, it was obvious by simply comparing the timing charts on paper that the results 

for each secretary were unique. A summary of this and all referenced prior work can be 

found at the end of this section in Table 1. 

Monrose and Rubin [10] later demonstrated their own system for identifying an 

individual, grouping test subjects into hierarchies based on similarity in typing style as 

they typed both pre-prepared text and free text. They then performed classification based 

on four progressively more complex methods that gave corresponding increasingly better 

results: 

 Euclidian distance between timing vectors taken from training and test 

samples. 

 Non-weighted probability that a given timing vector was from a particular 

subject. 

 Weighted probability that a given timing vector was from a particular 

subject. 

 Implementation of a Bayesian classifier. 

Bergadano et al. [3] demonstrated a statistical method for authenticating users of 

a system based on the time between pressing the first and last key of successive series of 

trigraphs, or sets of three letters. They gathered their timing samples by instructing users 

to copy a 683-character writing sample multiple times. Gunetti and Picardi [11] later 

expanded on this work by experimenting with authentication of users based on samples 

of free text gathered over several months in whatever setting was most comfortable for 

the user.  

Much of the prior work focused on analysis of users’ keystrokes as they typed 

several repetitions of short, pre-defined text or numeric sequences. This allowed the users 

to become more and more familiar with the text as they went on and develop a consistent, 

distinctive pattern to how they typed the text and was a very effective way of reducing 

much of the variability inherent in typing due to user distraction, outside influences, etc. 

Variability will be much higher when dealing with free-text as opposed to short, 
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structured inputs, but the input will be a more realistic model of an individual to study for 

application to “real-world” problems. In particular, Tappert et al. [6] [5] demonstrate 

methods for authenticating users based on long-form (over 600 characters) copy and free 

text input and collected their data in the same manner as Gunetti, but rather than 

classifying purely on feature vector distance as in [11], they used k-nearest neighbors 

clustering on these features. 

Clarke and Furnell [12] were among the first to investigate authenticating a 

mobile phone user via keystroke analysis. Users in their study entered a series of personal 

identification numbers (PIN), as well as short alphabetic messages into a numeric 

keypad-equipped handset. Following sample entry on the handset, the timing data was 

downloaded to a computer that processed the features using a series of neural networks 

for classification. While success rates around 85 percent were obtained, Maiorana et al. 

observe that neural networks are not a practical tool for mobile authentication use due to 

high training and processor cost. Instead, they combined a distance classifier, Bayes 

classifier, support vector machines and principal components analysis to build a system 

with much lower cost requirements both for both training and on-line classifying [13]. 

Using this system they were able to achieve roughly the same authentication success rate 

as Clarke and Furnell. 

Johansen [14] used a touchscreen numeric keypad to perform user classification. 

Their study also explored whether or not the classifier can be “fooled” using a program 

written to generate imitation keystroke patterns. Trojahn and Ortmeier [15] recently 

obtained impressive results in their experiment using both a touchscreen numeric keypad 

and touchscreen QWERTY alphabetic keypad. In both cases, the input consisted of short 

(11-12 character length) numbers or equal length phrases. To the best of our knowledge, 

no one has yet performed an experiment studying classification based on touchscreen, 

alphabetic free-text input. 
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Author(s) Keyboard Type Input Type 
Analysis 
Method Results 

Gaines, et al. Hardware QWERTY Fixed text Statistical 
Error free 
authentication 

Monrose, et al. Hardware QWERTY Free and fixed text Statistical 88–92% accuracy 
Bergandano, 
et al. Hardware QWERTY Fixed text Statistical 96–99% accuracy 

Gunetti, et al. Hardware QWERTY Free text Statistical 4.6% false alarm rate 

Tappert, et al. Hardware QWERTY Free and fixed text Statistical 1% equal error rate 

Clarke, et al. 
Hardware 12-key 
numeric 

Fixed numbers and 
text 

Neural 
network 

12.8% equal error 
rate 

Maiorana, et 
al. 

Hardware 12-key 
numeric Fixed text Statistical 

13.6% equal error 
rate 

Johansen 
Touchscreen 12-key 
numeric Free text Statistical 8.7% equal error rate 

Trojahn, et al. 
Touchscreen 12-key 
numeric Fixed text Statistical 9% false alarm rate 

Trojahn, et al. Touchscreen QWERTY Fixed text Statistical 12% false alarm rate 

Table 1.   Summary of prior work. 
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C. K-NEAREST NEIGHBORS ALGORITHM  

The k-nearest neighbors algorithm (kNN) [16], classifies a data point x by looking 

at the k points closest to x according to some distance metric and labeling x based on the 

class of those neighbors. The parameter k is chosen to be odd so a simple majority vote 

can be employed using the classes of the neighbors. The kNN algorithm obtains nice 

results when items in a single class tend to cluster together in the feature space using an 

appropriate distance metric. A common distance metric employed is Euclidian distance 

where the distance between two points xm and xn is defined as:  

 

2

, ,(x , x )m n m i n i

i

D x x 
.  

Since the distances of values from different categories, such as comparing the 

duration of a press of the letter “A” to the duration of a press of the letter “L”, cannot be 

directly compared without skewing the results, it is standard practice to normalize all of 

the values for these features prior to doing any distance comparison. In the 

implementation of our k-nearest neighbors classifier, normalization was accomplished by 

dividing each category’s data points by the category’s span; however, normalization is 

usually done by calculating the mean i  and standard deviation i  for a point ,m ix  and 

using the formula 

 

,m i i

i

x 





.  

k-nearest neighbors was used in [6] [5] [7] to authenticate users based on models created 

specifically for each user. If user one (or someone claiming to be user one) tried to log-in, 

the classifier would load a two-class model, consisting of a feature space for user one, 

along with a feature space created from all other users’ keystroke data. The classifier 

would place the data from the log-in attempt in this model and compare distances to the 

k-nearest neighbors. If a majority of the closest data points were in class “user one”, the 

log-in attempt would be valid, else the system would reject the imposter. The studies also 

tested a model using a weighting system, where the contribution of nearest neighbors to 
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the voting were weighted based on their distance from the point being classified on the 

theory that closer points were more likely to represent the true class of the point in 

question. 
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III. EXPERIMENT DESIGN 

This chapter will discuss the methodology and design of our study. 

A. DATA COLLECTION 

Data collection was performed on Nexus 4 smartphones, manufactured by LG 

Electronics and running the Android 4.2 operating system. Aside from very early 

versions, Android has built-in security designed to prevent the collection of keystroke 

data from users. We explored several options for bypassing this security in order to 

collect the data we needed, including altering the kernel and using a browser-based 

collection application, but found that we could simply load a custom keyboard 

application that contained our collection code onto the phone and give the application 

explicit permission to collect the data we needed.  

Each subject was asked to create four typing samples. Two fixed-text samples 

were based on a pre-written business email (see Appendix B) and two free-text samples 

were authored spontaneously by the subject. Subjects were provided instructions a few 

days before data collection in order to allow to prepare topics or themes to guide their 

free-text generation (e.g., to avoid writer’s-block during data collection) but they were 

not permitted to bring pre-written samples to copy for their free text. 

Two versions of each fixed-text and free-text samples were collected, one typed 

with the phone in the vertical (portrait) orientation and the other typed with the phone in 

the horizontal (landscape) orientation. 

No time limit was placed on data collection for any text sample. Upon completion 

of each sample, the data was saved in tab-delimited format to the phone’s internal 

memory and later collected for processing. 

B. RAW DATA 

Tappert et al. [5] build a feature vector for each user measuring average duration 

of key press and standard deviation for each letter in the alphabet and numbers 0–9, as 

well as special keys such as space and delete. The feature vector also contained average 
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type-1 and type-2 transition times and standard deviations for several common digraphs 

and trigraphs of alphabetic characters. We closely followed this approach, but used a list 

of the most common digraphs and trigraphs in the English language mined from 

numerous top classic works of literature [17] to study whether using more n-grams would 

produce better classification results. Our full list of features can be found in Appendix A. 

Raw data consisted of: 

 Key pressed 

 Timestamp of key press 

 Timestamp of key release 

Table 2 shows an example of the raw data collected. From this data, all duration 

and type-1 and type-2 timing data can be generated for any character or set of n-grams. 

 

Key Time pressed Time Released 

s 171817498919 171948828083 

i 172160120620 172284277495 

r 172747668307 172820856160 

, 176803520588 176891388741 

   

 
178524533865 178634468247 

c 180236421550 180334178302 

a 180658548819 180761219352 

n 181344707831 181424213400 

  181681439099 181757923151 

y 182168239038 182272923915 

o 182785513568 182896272000 

u 183058304656 183184994722 

Table 2.   Raw data example. 
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IV. ANALYSIS 

This chapter will describe our feature construction and data analysis 

methodology. 

A. FEATURE EXTRACTION 

Our raw data was processed with Python scripts to generate samples consisting of 

features used during training and testing. The features used in our analysis consist of:  

 Duration 

 Type-1 and type-2 transitions between bigrams 

 Type-2 transitions between trigrams  

Data was split into training and test data. For each, features were extracted 

containing three columns of data. The first contained one entry for each key on the 

keyboard, including letters, numbers, punctuation, and special characters such as delete. 

The second column contained the average duration time in milliseconds of the press of 

each key. The third column contained the standard deviation of the duration time for each 

key. Table 3 shows an example of a duration feature file. The files for n-gram transitions 

followed the same format, with the first column containing each of the two- or three-

character sets, the second column containing the average transition time in milliseconds, 

and the third column containing the standard deviation of the transition time. Table 4 

shows an example of an n-gram feature file. A global entry was calculated for each 

sample, consisting of the average duration time and standard deviation or average 

transition time and standard deviation for the entire file. When calculating the times and 

standard deviations, a value of 0.05 was inserted as a default value if a particular key or 

n-gram was not seen in the typing sample being processed in order to ensure each key 

had some small, non-zero probability of being observed under any classifier. 
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Key Pressed Duration Time (ms) Std. Deviation (ms) 

Global 125359534.4 26037704.04 

a 144162979 18996714.94 

b 132633908 19477968.23 

c 104753548 17206444.97 

d 114459026 21942023.64 

e 121318480 21847877.46 

f 116461926 33506453.14 

g 126501856.3 24237631.21 

h 138550281.6 9141359.669 

i 114632912.2 18309662.65 

j 0.05 0.05 

k 118065007.8 30226373.56 

Table 3.   Example duration training file 

 

Bigram Duration Time (ms) Std. Deviation (ms) 

Global 566001705.2 635577986.5 

OF 131298643 671450 

EL 528948573 0.05 

ED 116374180 0.05 

VE 266290249 123105555.5 

AD 0.05 0.05 

SO 140683657 686708 

SI 123927973 24156875 

MO 209583396 0.05 

GO 0.05 0.05 

MY 0.05 0.05 

WE 222056055.3 126685731.5 

Table 4.   Example bigram type-1 transition test file 

Since typing is an activity that is prone to multiple interruptions to review text 

being copied, take sips of coffee, answer questions from co-workers, etc., we set 
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thresholds for transition times in order to avoid data being skewed by outliers caused by 

these types of routine activities. We set the thresholds by making one pass through the 

raw data to calculate a global standard deviation, then experimenting with various 

multiples of that global standard deviation as a cutoff for inclusion in the processed 

training or test file. 

B. TRAINING AND TEST SETS 

In order to ensure valid classification results, the raw data for each user’s typing 

samples was split into separate training and test sets prior to processing as described 

above. Two different splits were used in order to compare classification performance for 

each.  

The first method was an 80/20 split where the first 80 percent of the sample was 

processed for a training set and the last 20 percent of the sample processed for a test set. 

For further validation of this method, we flipped this and made an additional set, using 

the last 80 percent of a sample for training and the first 20 percent for testing. 

The second method was only able to be performed on the first group of typing 

samples, portrait orientation copy text, due to both time constraints and the nature of the 

samples. Unlike the participant-authored free text samples, the copy text samples all 

contained the same content, broken into four different paragraphs. We constructed four 

corresponding training and test sets for each user by using each paragraph individually as 

a test set, with the remaining three paragraphs serving as training data. 

C. CLASSIFICATION 

We used the Orange toolset with Python for kNN classification. Continuous 

values were normalized within the classifier, Euclidian distance was used for 

measurement, and k was set to 5. Classifier performance was compared with a Naïve 

Bayes classifier and a Random Forest classifier, but these algorithms almost never 

delivered a correct classification and we do not report these negative results here. 

Used naively, the initial classification via kNN returned results based on what 

user the classifier thinks each individual feature belonged to. For example, it would tell 
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us what user it thought the values for a press of the “a” key belonged, what user the 

values for a press of the “b” key belonged to etc. While this is useful, it does not get us to 

our goal, which is to input the entire typing sample into the classifier and return single 

user identification based on all the features together. Instead, the individual 

classifications were combined using majority vote. An example of the results can be seen 

in Table 5.  

 

 
 122   301   323   336   347   362   372   381   388   392  

122 7 3 10 6 3 5 9 1 4 3 

301 1 19 5 2 3 2 6 0 11 2 

323 5 3 9 6 5 5 9 3 4 2 

336 3 4 5 3 8 7 8 7 4 2 

347 2 9 5 3 10 3 5 2 9 3 

362 1 4 8 3 5 9 10 3 4 4 

372 5 3 9 3 5 5 12 2 4 3 

381 1 10 5 3 6 2 7 5 4 8 

388 1 9 5 2 4 3 5 0 17 5 

392 1 9 5 2 8 3 7 1 8 7 

Table 5.   Example k-nearest neighbor classifier results. Rows are true users and 

columns are predictions for each individual feature. 

For example, using the results from Table 5, the classifier correctly classified the 

test sets for users 301, 323, 347, 372, and 388 since the number of features identified as 

belonging to their class was more than any other individual user identified with their data. 

Several runs were done for each user’s data with each feature set in order to find 

an ideal threshold to use to trim outlier values during pre-processing. We settled on 

cutting outlier values in our feature vectors that varied more than two standard deviations 

from the mean and that threshold is what the results reported in this thesis are based on. 
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V. RESULTS 

Participation for the study was solicited via email to students and faculty of the 

Computer Science Department and Cyber Academic Group at the Naval Postgraduate 

School. All subject participation was voluntary. Before data collection, all subjects were 

asked to complete a small demographic questionnaire covering their smartphone use and 

handed-ness. Subject data was tracked using a randomly assigned subject identifier to 

anonymize their data. 

Classification results for training/test data splits for the fixed-text samples can be 

found in Table 6 and results for the same data splits for the free-text samples can be 

found in Table 7. 80/20 means the first 80 percent of the sample was used for training and 

the last 20 percent was used for testing. 20/80 means the last 80 percent of the sample 

was used for training and the first 20 percent was used for testing. Portrait and landscape 

refers to the orientation the phone was held in during typing.  

Duration proved to be the most accurate feature for identification for most of 

these typing samples, correctly identifying participants 70 percent of the time in portrait 

fixed-text, portrait free-text and landscape fixed-text samples. However, it did not 

perform well with landscape free-text samples, as performance fell to a 35 percent correct 

identification rate. 
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Portrait 80/20 Portrait 20/80 Landscape 80/20 Landscape 20/80 

Duration 0.7 0.7 0.7 0.7 

     Bigram Type 1 
Transitions 0.3 0.4 0.6 0.7 

     Bigram Type 2 
Transitions 0.4 0.4 0.2 0.5 

     Trigram Type 2 
Transitions 0.1 0.3 0.1 0.4 

     All Features 
Combined 0.1 0.5 0.5 0.5 

 

Table 6.   User identification on fixed-text samples (80/20 split). 

 
Portrait 80/20 Portrait 20/80 Landscape 80/20 

Landscape 
20/80 

Duration 0.7 0.7 0.3 0.4 

     Bigram Type 1 
Transitions 0.4 0.4 0.1 0.4 

     Bigram Type 2 
Transitions 0.5 0.5 0.2 0.8 

     Trigram Type 2 
Transitions 0.4 0.6 0.2 0.3 

     All Features 
Combined 0.3 0.7 0.2 0.4 

Table 7.   User identification on free-text samples (80/20 split). 

Classification results for the training/test splits by paragraph can be found in 

Table 8. The only typing sample used to test this data split was the portrait orientation 

copy text. The paragraph number refers to the paragraph used as the test paragraph. 

Duration was once again the most reliable feature for classification, with performance 

rising from 50 percent at the beginning of the typing sample to 80 percent by the last 

paragraph tested. 



 19 

 
Paragraph 1 Paragraph 2 Paragraph 3 Paragraph 4 

Duration 0.5 0.6 0.7 0.8 

     Bigram Type 1 
Transitions 0.2 0.1 0.2 0.5 

     Bigram Type 2 
Transitions 0.2 0.4 0.5 0.6 

     Trigram Type 2 
Transitions 0.1 0.1 0.2 0.2 

     All Features 
Combined 0.1 0.3 0.4 0.5 

Table 8.   User identification on fixed-text samples (paragraph split). 

A. DISCUSSION 

Given that most prior work in keystroke-based classification found n-gram 

transition feature vectors worked much better than duration feature vectors for 

identification and authentication, it was surprising to see the opposite observed in this 

study. While future study is warranted, we propose some hypotheses for why this may be 

so. 

The first is that the feature space we chose for n-gram transitions may be too big. 

Russell and Norvig point out that nearest neighbors’ algorithms are well suited for 

situations with lower feature counts and robust data sets, but as the dimensionality of the 

feature set starts to rise, the nearest neighbors begin to fall farther and farther away from 

the data point in question [16]. With 300 bigrams and 150 trigrams, the size of the 

“neighborhood” in which we are looking for neighbors to poll to answer our 

classification question becomes very large and the probability that the closest neighbors 

are actually representative of the user class is small. 

Another contributor to duration being a better identifying marker may be the 

vastly different mechanics of typing on a smartphone touchscreen as opposed to typing 

on a keyboard laying on a desk or table. Most of the study participants typed in what has 

become the most widely used way of using a smartphone for text entry, which is to hold 
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the phone in both hands and use their thumbs to type, however one participant did lay the 

phone flat on the table in front of him, using his index fingers to type. The smaller size of 

touchscreen keyboard keys, along with the relatively large surface area of a human thumb 

tip or fingertip often leads to multiple typing errors in any given text entry session. The 

increase in error rate over using a conventional keyboard, along with the different 

biomechanics may lead to a natural tendency to produce a more pronounced duration 

model. Studying the differences in keystroke rhythm models produced by individuals 

using both traditional and touchscreen keyboards would be an interesting avenue for 

further study. 

The small size and relative homogeneity of the participant group also may have 

played a part in weighting classification success toward the duration features. A larger 

and more diverse mix of participants, including people who used touchscreen 

smartphones less frequently than our group or used this particular brand of smartphone 

regularly may have led to different results. 

The common trend across the data for both duration and transitions was an 

improvement in identification success as we moved further into the document. This was 

particularly evident when splitting the training and test sets by paragraph in the portrait 

orientation copy text sample. Using the first paragraph as a test set yielded only a 50 

percent success rate, but by the last paragraph, we identified the user correctly 90 percent 

of the time. Of course, using this method of splitting the training and test sets to compare 

classification results among several users only works when each user is typing exactly the 

same thing. This makes it less useful for identification in true free text entry situations, 

but does indicate that it is important to give the user time to become familiar with the 

equipment being used before creating a model or profile for classification, as well as 

periodically updating and refreshing the user model to account for possible changes in the 

user’s typing habits. 
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VI. CONCLUSION 

Our goal was to identify the user of a touchscreen smartphone based solely on the 

analysis of the user’s keystroke timing data created as they both copied pre-written text 

and typed unscripted free text into a text editor on the phone. We gathered data from ten 

users who typed two copy-text samples and two free-text samples into an LG Nexus 4 

smartphone, creating raw timing data based on the press and release times of each key the 

users pressed. We converted the raw timing data into feature vectors based on duration of 

key press and length of bigram and trigram transitions. These features were used in the 

Orange toolset implementation [18] of a k-nearest neighbors algorithm to identify the 

users. We obtained a 70 percent success rate identifying the user in three out of the four 

typing samples provided by each user; however that rate fell to 40 percent in the fourth 

typing sample. We learned that the n-gram transition feature vectors were not as 

successful as the duration feature vectors in classification, possibly due to an overly-large 

feature space. 

A. FUTURE WORK 

Several opportunities exist for future work based on this study. 

 Using 10-fold validation in order to confirm test results. 

 Pruning the n-gram transition space in order to test whether or not duration 

is actually a better feature to base user identification on when using 

smartphone text input or if the feature space was simply too large to allow 

for accurate classification. 

 Using the raw data collected in this study, create authentication models for 

each user as described in part B of the introduction chapter and in Tappert 

[5] in order to ask the question “Is this user X or not?” as opposed to the 

question asked in this study, “Who is this user?”. 

 Recruit a significantly larger and more diverse pool of participants for this 

study in order to determine the effect such a change on the user count and 

smartphone usage level would have on identification. 
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APPENDIX A. FEATURES 

A. KEYS MONITORED FOR DURATION OF PRESS 

  a-z 

 0-9 

 ? ! @ # $ % ^ & * ( ) \ / 

 <space> 

 <enter> 

 <delete> 

B. N-GRAMS MONITORED FOR TRANSITION TIMES 

Most common bigrams including space (sample includes 6442495 bigrams) 

 E - 245521  3.81% |  M - 54707  0.85% | H - 34308  0.53% 

 T - 188459  2.93% | AT - 54679  0.85% | ME - 33498  0.52% 

 HE - 158681  2.46% | ON - 54317  0.84% |  P - 33488  0.52% 

 TH - 155382  2.41% |  B - 52647  0.82% | NT - 33309  0.52% 

 D - 151912  2.36% | HI - 51487  0.80% | EA - 33115  0.51% 

 A - 137885  2.14% | EN - 50680  0.79% | AL - 31638  0.49% 

 T - 131548  2.04% | TO - 48934  0.76% |  L - 31413  0.49% 

 S - 127468  1.98% | NG - 48452  0.75% | L - 31271  0.49% 

 H - 103608  1.61% |  C - 46867  0.73% | A - 31181  0.48% 

 S - 97862  1.52% | IS - 46795  0.73% | LL - 30942  0.48% 

 IN - 94900  1.47% | IT - 46750  0.73% | NE - 29606  0.46% 

 N - 90466  1.40% |  F - 44074  0.68% |  N - 28561  0.44% 

 AN - 89239  1.39% | OR - 43306  0.67% | TI - 27954  0.43% 

 W - 87123  1.35% | F - 42456  0.66% | DE - 27149  0.42% 

 ER - 84372  1.31% | AS - 41550  0.64% | NO - 27144  0.42% 

 I - 78395  1.22% | G - 40856  0.63% | BE - 25716  0.40% 

 R - 71433  1.11% | TE - 40346  0.63% | RO - 25665  0.40% 

 RE - 69581  1.08% | ES - 40152  0.62% |  R - 25511  0.40% 

 O - 69365  1.08% |  D - 39144  0.61% | WA - 25409  0.39% 

 Y - 69357  1.08% | AR - 38194  0.59% | WH - 25352  0.39% 

 ND - 64917  1.01% | ST - 38056  0.59% | M - 24953  0.39% 

 O - 61336  0.95% | LE - 37620  0.58% | HO - 24900  0.39% 

 OU - 59917  0.93% | SE - 36629  0.57% |  Y - 24563  0.38% 

 HA - 58931  0.91% | OF - 35593  0.55% | EL - 24556  0.38% 

 ED - 56774  0.88% | VE - 35534  0.55% | AD - 24154  0.37% 

 

Most common bigrams in the beginning of words (sample includes 1226563 

trigrams) 

 TH - 125714 10.25% | SO - 12480  1.02% | SI -  6781  0.55% 

 AN - 50095  4.08% | MO - 12065  0.98% | GO -  6575  0.54% 

 TO - 40128  3.27% | AS - 12000  0.98% | MY -  6421  0.52% 

 HE - 39426  3.21% | WE - 11936  0.97% | SU -  6383  0.52% 

 OF - 34439  2.81% | SE - 11028  0.90% | DA -  6012  0.49% 

 IN - 28313  2.31% | CA - 10927  0.89% | FI -  5343  0.44% 
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 HI - 26851  2.19% | BU - 10719  0.87% | CH -  5325  0.43% 

 HA - 26660  2.17% | ME - 10697  0.87% | LA -  5276  0.43% 

 WH - 24883  2.03% | ST - 10569  0.86% | PE -  5042  0.41% 

 A - 23513  1.92% | DO - 10360  0.84% | EX -  4975  0.41% 

 BE - 22023  1.80% | AT -  9867  0.80% | FE -  4805  0.39% 

 WA - 20721  1.69% | LI -  9455  0.77% | PO -  4757  0.39% 

 YO - 20708  1.69% | DE -  9078  0.74% | BY -  4756  0.39% 

 NO - 19878  1.62% | PR -  9064  0.74% | MI -  4720  0.38% 

 CO - 19722  1.61% | WO -  9033  0.74% | UP -  4719  0.38% 

 WI - 19434  1.58% | IS -  8833  0.72% | GR -  4691  0.38% 

 I - 18192  1.48% | FR -  8512  0.69% | NE -  4654  0.38% 

 SH - 16490  1.34% | HO -  8188  0.67% | OU -  4632  0.38% 

 SA - 15659  1.28% | DI -  8171  0.67% | UN -  4629  0.38% 

 IT - 15521  1.27% | LO -  7779  0.63% | CR -  4578  0.37% 

 FO - 15241  1.24% | LE -  7583  0.62% | EV -  4517  0.37% 

 RE - 15029  1.23% | AR -  7413  0.60% | TR -  4428  0.36% 

 ON - 14957  1.22% | S -  7372  0.60% | BR -  4323  0.35% 

 MA - 14752  1.20% | FA -  7149  0.58% | BA -  4295  0.35% 

 AL - 12594  1.03% | PA -  6801  0.55% | TA -  4134  0.34% 

 

Most common bigrams in the end of words (sample includes 1226563 

trigrams) 

 HE - 101821  8.30% | TH - 14891  1.21% | UR -  5982  0.49% 

 ED - 53080  4.33% | AD - 14338  1.17% | MY -  5978  0.49% 

 ND - 51591  4.21% | VE - 14022  1.14% | TY -  5944  0.48% 

 NG - 39647  3.23% | ST - 13369  1.09% | TS -  5844  0.48% 

 ER - 38873  3.17% | NT - 13130  1.07% | ET -  5778  0.47% 

 TO - 37868  3.09% | LE - 13047  1.06% | SO -  5498  0.45% 

 AT - 33811  2.76% | LD - 12476  1.02% | RT -  5286  0.43% 

 OF - 32699  2.67% | ID - 12256  1.00% | KE -  5192  0.42% 

 IS - 29806  2.43% | CH - 12086  0.99% | DE -  5097  0.42% 

 AS - 26232  2.14% | CE - 11760  0.96% | AL -  5047  0.41% 

 IN - 25271  2.06% | OT - 11697  0.95% | BY -  4857  0.40% 

 RE - 24297  1.98% | SE - 11433  0.93% | IR -  4769  0.39% 

 A - 23513  1.92% | NE - 10613  0.87% | LF -  4555  0.37% 

 ON - 22656  1.85% | OW -  9434  0.77% | US -  4472  0.36% 

 EN - 19830  1.62% | AY -  8627  0.70% | DS -  4406  0.36% 

 LL - 19094  1.56% | IM -  8566  0.70% | HO -  4228  0.34% 

 ES - 18196  1.48% | RY -  7904  0.64% | AR -  4211  0.34% 

 I - 18192  1.48% |  S -  7372  0.60% | NS -  4183  0.34% 

 LY - 17917  1.46% | HT -  7283  0.59% | EE -  4178  0.34% 

 OR - 17357  1.42% | RS -  7167  0.58% | NO -  4178  0.34% 

 ME - 17309  1.41% | SS -  7124  0.58% | RD -  3814  0.31% 

 UT - 16237  1.32% | OM -  7054  0.58% | WN -  3793  0.31% 

 IT - 15953  1.30% | TE -  7045  0.57% | GE -  3681  0.30% 

 OU - 15459  1.26% | EY -  6965  0.57% | CK -  3635  0.30% 

 AN - 15178  1.24% | BE -  6501  0.53% | DO -  3421  0.28% 

 

 

Most common bigrams not including space (sample includes 5215931 

bigrams) 

 TH - 167258  3.21% | TE - 42514  0.82% | SI - 26473  0.51% 

 HE - 159235  3.05% | TI - 40982  0.79% | SO - 26287  0.50% 

 IN - 95194  1.83% | SE - 39804  0.76% | RA - 26255  0.50% 

 ER - 90930  1.74% | AR - 39143  0.75% | EC - 26225  0.50% 
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 AN - 90006  1.73% | LE - 38271  0.73% | YO - 25772  0.49% 

 RE - 71383  1.37% | OF - 37388  0.72% | BE - 25717  0.49% 

 ND - 66692  1.28% | SA - 36088  0.69% | AD - 25681  0.49% 

 ED - 66683  1.28% | VE - 35538  0.68% | SS - 25358  0.49% 

 HA - 64086  1.23% | ME - 33804  0.65% | DA - 25316  0.49% 

 ES - 63216  1.21% | AL - 33710  0.65% | LI - 24618  0.47% 

 OU - 60474  1.16% | NO - 32644  0.63% | OM - 24394  0.47% 

 TO - 58346  1.12% | NE - 31669  0.61% | RT - 24148  0.46% 

 AT - 56683  1.09% | LL - 31649  0.61% | EW - 24054  0.46% 

 EN - 55832  1.07% | EL - 31405  0.60% | DI - 24030  0.46% 

 ON - 55755  1.07% | SH - 30650  0.59% | CO - 23975  0.46% 

 EA - 55459  1.06% | OT - 30566  0.59% | EE - 23940  0.46% 

 NT - 54694  1.05% | TT - 30218  0.58% | MA - 23817  0.46% 

 ST - 54195  1.04% | RO - 29790  0.57% | EM - 23453  0.45% 

 HI - 53885  1.03% | DE - 29619  0.57% | AI - 22856  0.44% 

 NG - 49388  0.95% | TA - 28744  0.55% | UT - 22840  0.44% 

 IS - 49156  0.94% | DT - 28373  0.54% | WI - 22502  0.43% 

 IT - 48057  0.92% | RI - 28017  0.54% | CE - 22365  0.43% 

 AS - 45974  0.88% | WA - 26889  0.52% | OW - 22174  0.43% 

 OR - 45043  0.86% | WH - 26749  0.51% | CH - 22152  0.42% 

 ET - 42573  0.82% | HO - 26702  0.51% | RS - 21231  0.41% 

 

Most common trigrams including space (sample includes 6442494 trigrams) 

 TH - 125714  1.95% | WH - 24883  0.39% | OR - 17357  0.27% 

HE - 101821  1.58% | RE - 24297  0.38% | ME - 17309  0.27% 

THE - 98530  1.53% | A - 23513  0.36% | E H - 17282  0.27% 

ED - 53080  0.82% | E S - 23064  0.36% | D A - 16997  0.26% 

ND - 51591  0.80% | HAT - 22861  0.35% | SH - 16490  0.26% 

 AN - 50095  0.78% | ON - 22656  0.35% | FOR - 16426  0.25% 

AND - 48312  0.75% | E A - 22344  0.35% | UT - 16237  0.25% 

 TO - 40128  0.62% | BE - 22023  0.34% | S T - 16139  0.25% 

NG - 39647  0.62% | N T - 21385  0.33% | IT - 15953  0.25% 

 HE - 39426  0.61% | HIS - 20975  0.33% | ERE - 15807  0.25% 

ER - 38873  0.60% | T T - 20809  0.32% | SA - 15659  0.24% 

ING - 38182  0.59% | WA - 20721  0.32% | IT - 15521  0.24% 

TO - 37868  0.59% | YO - 20708  0.32% | OU - 15459  0.24% 

 OF - 34439  0.53% | YOU - 20678  0.32% | FO - 15241  0.24% 

AT - 33811  0.52% | E W - 19929  0.31% | AN - 15178  0.24% 

OF - 32699  0.51% | NO - 19878  0.31% | WAS - 15122  0.23% 

IS - 29806  0.46% | EN - 19830  0.31% | RE - 15029  0.23% 

D T - 28343  0.44% | CO - 19722  0.31% | E C - 15001  0.23% 

 IN - 28313  0.44% | WI - 19434  0.30% | ON - 14957  0.23% 

 HI - 26851  0.42% | THA - 19227  0.30% | TH - 14891  0.23% 

 HA - 26660  0.41% | LL - 19094  0.30% | MA - 14752  0.23% 

E T - 26459  0.41% | ES - 18196  0.28% | AD - 14338  0.22% 

AS - 26232  0.41% | I - 18192  0.28% | D H - 14309  0.22% 

HER - 26208  0.41% | LY - 17917  0.28% | E O - 14113  0.22% 

IN - 25271  0.39% | S A - 17434  0.27% | VE - 14022  0.22% 

 

Most common trigrams not including space (sample includes 5215930 

trigrams) 

THE - 104376  2.00% | VER - 12279  0.24% | ESA -  9302  0.18% 

AND - 48638  0.93% | TER - 12274  0.24% | EVE -  9271  0.18% 

ING - 38500  0.74% | ALL - 12021  0.23% | NCE -  9249  0.18% 

HER - 30219  0.58% | ION - 11289  0.22% | EDA -  9239  0.18% 
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THA - 24760  0.47% | FTH - 11247  0.22% | AID -  9213  0.18% 

HAT - 23177  0.44% | STH - 11210  0.21% | HIN -  9203  0.18% 

HIS - 21322  0.41% | OFT - 11144  0.21% | NDT -  9190  0.18% 

YOU - 20873  0.40% | HAD - 11113  0.21% | HEN -  9184  0.18% 

ERE - 20173  0.39% | REA - 11110  0.21% | BUT -  9178  0.18% 

DTH - 18382  0.35% | EST - 10757  0.21% | OME -  9149  0.18% 

ENT - 17684  0.34% | ERS - 10698  0.21% | ILL -  9120  0.17% 

ETH - 16638  0.32% | GHT - 10475  0.20% | AST -  9111  0.17% 

FOR - 16484  0.32% | ESS - 10280  0.20% | RTH -  9067  0.17% 

NTH - 16221  0.31% | HIM - 10191  0.20% | OUL -  8901  0.17% 

THI - 15782  0.30% | EAR - 10173  0.20% | ATT -  8848  0.17% 

SHE - 15440  0.30% | EAN -  9983  0.19% | STO -  8836  0.17% 

WAS - 15277  0.29% | AVE -  9720  0.19% | SAI -  8753  0.17% 

HES - 14937  0.29% | ONE -  9672  0.19% | ATH -  8683  0.17% 

ITH - 14829  0.28% | HEC -  9606  0.18% | OUN -  8664  0.17% 

TTH - 14454  0.28% | TIN -  9590  0.18% | ERT -  8579  0.16% 

OTH - 14352  0.28% | RES -  9485  0.18% | SAN -  8556  0.16% 

INT - 13802  0.26% | HEW -  9480  0.18% | HOU -  8465  0.16% 

NOT - 13411  0.26% | ONT -  9445  0.18% | OUR -  8460  0.16% 

WIT - 13084  0.25% | ATI -  9437  0.18% | OUT -  8436  0.16% 

EDT - 12922  0.25% | HEM -  9363  0.18% | HEA -  8393  0.16% 

List from [13]. 
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APPENDIX B. FIXED-TEXT SAMPLE 

Below is the fixed-text sample used in our experimentation. 

Sir, 

 

Can you clear up some confusion on a few issues before next week’s budget meeting, 

please? We have a difference of opinion among our team about which direction to take 

on some of the talking points we discussed earlier. Any guidance you can give us would 

be very helpful. 

 

First, is the major project in California going ahead as scheduled? There have been 

several different dates thrown out by various team leads, with one quoting tomorrow as 

the start date, and we just need clarification about the actual starting date for that project. 

The hard deadline is approaching fast, so this is time sensitive. 

 

Second, will the renovation of the main office building be funded under this year’s 

budget or next year’s budget? We were operating under the assumption that this project 

was already fully funded, but the accounting department has given us some pushback 

about starting, saying we don’t have the money. The quotes we got were reasonable, but 

maybe you got a different quote. Of course, its possible accounting is just using fuzzy 

math, too! 

 

Finally, will vacation be allowed before the end of the uptown project? I definitely 

understand that we have been building toward our goal for the better part of ten years 

now and that organizing so many state and local government agencies along with all the 

associated neighborhood committees into a group able to come to a consensus has taken a 

monumental effort, but some of our team members are on the verge of burnout. I believe 

a short break would work wonders for our technical team. 

 

Thanks for your assistance clarifying these matters. 
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